neupy.init.XavierUniform
- class neupy.init.XavierUniform[source]
Xavier Glorot parameter initialization method based on uniform distribution.
Parameters: - gain : float
Scales variance of the distribution by this factor. Value 2 is a suitable choice for layers that have Relu non-linearity. Defaults to 1.
- seed : None or int
Random seed. Integer value will make results reproducible. Defaults to None.
References
- [1] Xavier Glorot, Y Bengio. Understanding the difficulty
- of training deep feedforward neural networks, 2010.
Methods
sample(shape, return_array=False) Returns tensorflow’s tensor or numpy array with specified shape. Type of the object depends on the return_array value. Numpy array will be returned when return_array=True and tensor otherwise. - sample(shape, return_array=False)[source]
Returns tensorflow’s tensor with specified shape.
Parameters: - shape : tuple
Parameter shape.
- return_array : bool
Returns numpy’s array when equal to True and tensorflow’s tensor when equal to False. Defaults to False.
Returns: - array-like or Tensor