neupy.plots.saliency_map module
- neupy.plots.saliency_map.saliency_map(network, image, mode='heatmap', sigma=8, ax=None, show=True, **kwargs)[source]
Saliency Map plot.
Parameters: - network : network
Network based on which will be computed saliency map.
- image : 3D array-like tensor
Image based on which will be computed saliency map.
- mode : {raw, heatmap}
- raw Visualize raw gradient. White color on the plot defines high gradient values.
- heatmap Applies gaussian filter to the gradient and visualize as a heatmap plot.
Defaults to heatmap.
- sigma : float
Standard deviation for kernel in Gaussian filter. It is used only when mode='heatmap'. Defaults to 8.
- ax : object or None
Matplotlib axis object. None values means that axis equal to the current axes instance (the same as ax = plt.gca()). Defaults to None.
- show : bool
If parameter is equal to True then plot will be displayed. Defaults to True.
- **kwargs
Arguments for plt.imshow function.
Returns: - object
Matplotlib axis instance.
Examples
>>> from neupy import layers, plots >>> >>> network = layers.join( ... layers.Input((3, 28, 28)), ... layers.Convolution((32, 3, 3)) >> layers.Relu(), ... layers.Reshape(), ... layers.Softmax(10), ... ) >>> >>> dog_image = load_dog_image() >>> plots.saliency_map(network, dog_image)
- neupy.plots.saliency_map.saliency_map_graph(network)[source]
Returns tensorflow variables for saliency map.
Parameters: - network : network
- image : ndarray