neupy.algorithms.gd.quasi_newton module
- class neupy.algorithms.gd.quasi_newton.QuasiNewton[source]
- Quasi-Newton algorithm. Every iteration quasi-Network method approximates inverse Hessian matrix with iterative updates. It doesn’t have step parameter. Instead, algorithm applies line search for the step parameter that satisfies strong Wolfe condition. Parameters that control wolfe search start with the wolfe_ prefix. - Parameters: - update_function : bfgs, dfp, sr1
- Update function for the iterative inverse hessian matrix approximation. Defaults to bfgs. - bfgs - It’s rank 2 formula update. It can suffer from round-off error and inaccurate line searches.
- dfp - DFP is a method very similar to BFGS. It’s rank 2 formula update. It can suffer from round-off error and inaccurate line searches.
- sr1 - Symmetric rank 1 (SR1). Generates update for the inverse hessian matrix adding symmetric rank-1 matrix. It’s possible that there is no rank 1 updates for the matrix and in this case update won’t be applied and original inverse hessian will be returned.
 
- h0_scale : float
- Default Hessian matrix is an identity matrix. The h0_scale parameter scales identity matrix. Defaults to 1. 
- epsilon : float
- Controls numerical stability for the update_function parameter. Defaults to 1e-7. 
- wolfe_maxiter : int
- Controls maximum number of iteration during the line search that identifies optimal step size during the weight update stage. Defaults to 20. 
- wolfe_c1 : float
- Parameter for Armijo condition rule. It’s used during the line search that identifies optimal step size during the weight update stage. Defaults 1e-4. 
- wolfe_c2 : float
- Parameter for curvature condition rule. It’s used during the line search that identifies optimal step size during the weight update stage. Defaults 0.9. 
- network : list, tuple or LayerConnection instance
- Network’s architecture. There are a few ways to define it. - List of layers. For instance, [Input(2), Tanh(4), Relu(1)].
- Constructed layers. For instance, Input(2) >> Tanh(4) >> Relu(1).
 
- loss : str or function
- Error/loss function. Defaults to mse. - mae - Mean Absolute Error.
- mse - Mean Squared Error.
- rmse - Root Mean Squared Error.
- msle - Mean Squared Logarithmic Error.
- rmsle - Root Mean Squared Logarithmic Error.
- categorical_crossentropy - Categorical cross entropy.
- binary_crossentropy - Binary cross entropy.
- binary_hinge - Binary hinge entropy.
- categorical_hinge - Categorical hinge entropy.
- Custom function which accepts two mandatory arguments. The first one is expected value and the second one is predicted value. Example:
 - def custom_func(expected, predicted): return expected - predicted 
- show_epoch : int
- This property controls how often the network will display information about training. It has to be defined as positive integer. For instance, number 100 mean that network shows summary at 1st, 100th, 200th, 300th … and last epochs. - Defaults to 1. 
- shuffle_data : bool
- If it’s True than training data will be shuffled before the training. Defaults to True. 
- signals : dict, list or function
- Function that will be triggered after certain events during the training. 
- verbose : bool
- Property controls verbose output in terminal. The True value enables informative output in the terminal and False - disable it. Defaults to False. 
- regularizer : function or None
- Network’s regularizer. 
 - Notes - Method requires all training data during propagation, which means it cannot be trained with mini-batches.
 - References - [1] Yang Ding, Enkeleida Lushi, Qingguo Li,
- Investigation of quasi-Newton methods for unconstrained optimization. http://people.math.sfu.ca/~elushi/project_833.pdf
- [2] Jorge Nocedal, Stephen J. Wright, Numerical Optimization.
- Chapter 6, Quasi-Newton Methods, p. 135-163
 - Examples - >>> import numpy as np >>> from neupy import algorithms >>> from neupy.layers import * >>> >>> x_train = np.array([[1, 2], [3, 4]]) >>> y_train = np.array([[1], [0]]) >>> >>> optimizer = algorithms.QuasiNewton( ... Input(2) >> Sigmoid(3) >> Sigmoid(1), ... update_function='bfgs' ... ) >>> optimizer.train(x_train, y_train, epochs=10) - Attributes: - errors : list
- Information about errors. It has two main attributes, namely train and valid. These attributes provide access to the training and validation errors respectively. 
- last_epoch : int
- Value equals to the last trained epoch. After initialization it is equal to 0. 
- n_updates_made : int
- Number of training updates applied to the network. 
 - Methods - predict(X) - Predicts output for the specified input. - train(X_train, y_train, X_test=None, y_test=None, epochs=100) - Train network. You can control network’s training procedure with epochs parameter. The X_test and y_test should be presented both in case network’s validation required after each training epoch. - fit(*args, **kwargs) - Alias to the train method. - epsilon = None[source]
 - h0_scale = None[source]
 - init_train_updates()[source]
 - init_variables()[source]
 - options = {'epsilon': Option(class_name='QuasiNewton', value=NumberProperty(name="epsilon")), 'h0_scale': Option(class_name='QuasiNewton', value=NumberProperty(name="h0_scale")), 'loss': Option(class_name='BaseOptimizer', value=FunctionWithOptionsProperty(name="loss")), 'regularizer': Option(class_name='BaseOptimizer', value=Property(name="regularizer")), 'show_epoch': Option(class_name='BaseNetwork', value=IntProperty(name="show_epoch")), 'shuffle_data': Option(class_name='BaseNetwork', value=Property(name="shuffle_data")), 'signals': Option(class_name='BaseNetwork', value=Property(name="signals")), 'target': Option(class_name='BaseOptimizer', value=Property(name="target")), 'update_function': Option(class_name='QuasiNewton', value=ChoiceProperty(name="update_function")), 'verbose': Option(class_name='Verbose', value=VerboseProperty(name="verbose")), 'wolfe_c1': Option(class_name='WolfeLineSearchForStep', value=NumberProperty(name="wolfe_c1")), 'wolfe_c2': Option(class_name='WolfeLineSearchForStep', value=NumberProperty(name="wolfe_c2")), 'wolfe_maxiter': Option(class_name='WolfeLineSearchForStep', value=IntProperty(name="wolfe_maxiter"))}[source]
 - step = None[source]
 - update_function = None[source]