neupy.algorithms.gd.base module
- class neupy.algorithms.gd.base.BaseOptimizer[source]
Gradient descent algorithm.
Parameters: - network : list, tuple or LayerConnection instance
Network’s architecture. There are a few ways to define it.
- List of layers. For instance, [Input(2), Tanh(4), Relu(1)].
- Constructed layers. For instance, Input(2) >> Tanh(4) >> Relu(1).
- regularizer : function or None
Network’s regularizer.
- loss : str or function
Error/loss function. Defaults to mse.
- mae - Mean Absolute Error.
- mse - Mean Squared Error.
- rmse - Root Mean Squared Error.
- msle - Mean Squared Logarithmic Error.
- rmsle - Root Mean Squared Logarithmic Error.
- categorical_crossentropy - Categorical cross entropy.
- binary_crossentropy - Binary cross entropy.
- binary_hinge - Binary hinge entropy.
- categorical_hinge - Categorical hinge entropy.
- Custom function which accepts two mandatory arguments. The first one is expected value and the second one is predicted value. Example:
def custom_func(expected, predicted): return expected - predicted
- step : float, Variable
Learning rate, defaults to 0.1.
- show_epoch : int
This property controls how often the network will display information about training. It has to be defined as positive integer. For instance, number 100 mean that network shows summary at 1st, 100th, 200th, 300th … and last epochs.
Defaults to 1.
- shuffle_data : bool
If it’s True than training data will be shuffled before the training. Defaults to True.
- signals : dict, list or function
Function that will be triggered after certain events during the training.
- verbose : bool
Property controls verbose output in terminal. The True value enables informative output in the terminal and False - disable it. Defaults to False.
Attributes: - errors : list
Information about errors. It has two main attributes, namely train and valid. These attributes provide access to the training and validation errors respectively.
- last_epoch : int
Value equals to the last trained epoch. After initialization it is equal to 0.
- n_updates_made : int
Number of training updates applied to the network.
Methods
predict(X) Predicts output for the specified input. train(X_train, y_train, X_test=None, y_test=None, epochs=100) Train network. You can control network’s training procedure with epochs parameter. The X_test and y_test should be presented both in case network’s validation required after each training epoch. fit(*args, **kwargs) Alias to the train method. - format_input(X)[source]
- format_target(y)[source]
- get_params(deep=False, with_network=True)[source]
- init_functions()[source]
- init_train_updates()[source]
- loss = None[source]
- one_training_update(X_train, y_train)[source]
Function would be trigger before run all training procedure related to the current epoch.
Parameters: - epoch : int
Current epoch number.
- options = {'loss': Option(class_name='BaseOptimizer', value=FunctionWithOptionsProperty(name="loss")), 'regularizer': Option(class_name='BaseOptimizer', value=Property(name="regularizer")), 'show_epoch': Option(class_name='BaseNetwork', value=IntProperty(name="show_epoch")), 'shuffle_data': Option(class_name='BaseNetwork', value=Property(name="shuffle_data")), 'signals': Option(class_name='BaseNetwork', value=Property(name="signals")), 'step': Option(class_name='BaseOptimizer', value=ScalarVariableProperty(name="step")), 'target': Option(class_name='BaseOptimizer', value=Property(name="target")), 'verbose': Option(class_name='Verbose', value=VerboseProperty(name="verbose"))}[source]
- predict(*X, **kwargs)[source]
Makes a raw prediction.
Parameters: - X : array-like
Returns: - array-like
- regularizer = None[source]
- score(X, y)[source]
Calculate prediction accuracy for input data.
Parameters: - X : array-like
- y : array-like
Returns: - float
Prediction error.
- step = None[source]
- target = None[source]
- train(X_train, y_train, X_test=None, y_test=None, *args, **kwargs)[source]
Method train neural network.
Parameters: - X_train : array-like
- y_train : array-like or None
- X_test : array-like or None
- y_test : array-like or None
- epochs : int
Defaults to 100.
- epsilon : float or None
Defaults to None.
- class neupy.algorithms.gd.base.GradientDescent[source]
Mini-batch Gradient Descent algorithm.
Parameters: - batch_size : int or None
Set up min-batch size. The None value will ensure that all data samples will be propagated through the network at once. Defaults to 128.
- network : list, tuple or LayerConnection instance
Network’s architecture. There are a few ways to define it.
- List of layers. For instance, [Input(2), Tanh(4), Relu(1)].
- Constructed layers. For instance, Input(2) >> Tanh(4) >> Relu(1).
- regularizer : function or None
Network’s regularizer.
- loss : str or function
Error/loss function. Defaults to mse.
- mae - Mean Absolute Error.
- mse - Mean Squared Error.
- rmse - Root Mean Squared Error.
- msle - Mean Squared Logarithmic Error.
- rmsle - Root Mean Squared Logarithmic Error.
- categorical_crossentropy - Categorical cross entropy.
- binary_crossentropy - Binary cross entropy.
- binary_hinge - Binary hinge entropy.
- categorical_hinge - Categorical hinge entropy.
- Custom function which accepts two mandatory arguments. The first one is expected value and the second one is predicted value. Example:
def custom_func(expected, predicted): return expected - predicted
- step : float, Variable
Learning rate, defaults to 0.1.
- show_epoch : int
This property controls how often the network will display information about training. It has to be defined as positive integer. For instance, number 100 mean that network shows summary at 1st, 100th, 200th, 300th … and last epochs.
Defaults to 1.
- shuffle_data : bool
If it’s True than training data will be shuffled before the training. Defaults to True.
- signals : dict, list or function
Function that will be triggered after certain events during the training.
- verbose : bool
Property controls verbose output in terminal. The True value enables informative output in the terminal and False - disable it. Defaults to False.
Examples
>>> import numpy as np >>> from neupy import algorithms >>> from neupy.algorithms import * >>> >>> x_train = np.array([[1, 2], [3, 4]]) >>> y_train = np.array([[1], [0]]) >>> >>> network = Input(2) >> Sigmoid(3) >> Sigmoid(1) >>> optimizer = algorithms.GradientDescent(network, batch_size=1) >>> optimizer.train(x_train, y_train)
Attributes: - errors : list
Information about errors. It has two main attributes, namely train and valid. These attributes provide access to the training and validation errors respectively.
- last_epoch : int
Value equals to the last trained epoch. After initialization it is equal to 0.
- n_updates_made : int
Number of training updates applied to the network.
Methods
predict(X) Predicts output for the specified input. train(X_train, y_train, X_test=None, y_test=None, epochs=100) Train network. You can control network’s training procedure with epochs parameter. The X_test and y_test should be presented both in case network’s validation required after each training epoch. fit(*args, **kwargs) Alias to the train method. - batch_size = None[source]
- init_train_updates()[source]
- one_training_update(X_train, y_train)[source]
Train one epoch.
Parameters: - X_train : array-like
Training input dataset.
- y_train : array-like
Training target dataset.
Returns: - float
Training error.
- options = {'batch_size': Option(class_name='GradientDescent', value=IntProperty(name="batch_size")), 'loss': Option(class_name='BaseOptimizer', value=FunctionWithOptionsProperty(name="loss")), 'regularizer': Option(class_name='BaseOptimizer', value=Property(name="regularizer")), 'show_epoch': Option(class_name='BaseNetwork', value=IntProperty(name="show_epoch")), 'shuffle_data': Option(class_name='BaseNetwork', value=Property(name="shuffle_data")), 'signals': Option(class_name='BaseNetwork', value=Property(name="signals")), 'step': Option(class_name='BaseOptimizer', value=ScalarVariableProperty(name="step")), 'target': Option(class_name='BaseOptimizer', value=Property(name="target")), 'verbose': Option(class_name='Verbose', value=VerboseProperty(name="verbose"))}[source]
- score(X, y)[source]
Check the prediction error for the specified input samples and their targets.
Parameters: - X : array-like
- y : array-like
Returns: - float
Prediction error.